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We develop a method that recovers the surface, materials, and illumination
of a scene from its posed multi-view images. In contrast to prior work, it
does not require any additional data and can handle glossy objects or bright
lighting. It is a progressive inverse rendering approach, which consists
of three stages. In the first stage, we reconstruct the scene radiance and
signed distance function (SDF) with a novel regularization strategy for
specular reflections. We propose to explain a pixel color using both surface
and volume rendering jointly, which allows for handling complex view-
dependent lighting effects for surface reconstruction. In the second stage,
we distill light visibility and indirect illumination from the learned SDF and
radiance field using learnablemapping functions. Finally, we design amethod
for estimating the ratio of incoming direct light reflected in a specularmanner
and use it to reconstruct the materials and direct illumination. Experimental
results demonstrate that the proposed method outperforms the current state-
of-the-art in recovering surfaces, materials, and lighting without relying on
any additional data.
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1 INTRODUCTION
Reconstructing shape, material, and lighting frommultiple views has
wide applications in computer vision, virtual reality, augmented real-
ity, and shape analysis. The emergence of neural radiance fields [Milden-
hall et al. 2020] provides a framework for high-quality scene recon-
struction. Subsequently, many works [Fu et al. 2022; Oechsle et al.
2021; Wang et al. 2021, 2022; Yariv et al. 2021] have incorporated im-
plicit neural surfaces into neural radiance fields, further enhancing
the quality of surface reconstruction from multi-views. Recently,
several works [Munkberg et al. 2022; Zhang et al. 2021a,b, 2022b]
have utilized coordinate-based networks to predict materials and
learned parameters to represent illumination, followed by synthe-
sizing image color using physically-based rendering equations to
achieve material and lighting reconstruction. However, these meth-
ods typically do not fully consider the interdependence between
different components, leading to the following issues with glossy
surfaces when using real data.

First, surfaces with glossy materials typically result in highlights.
The best current methods for reconstructing implicit neural sur-
faces rarely consider material information and directly reconstruct
surfaces. The surface parameters can then be frozen for subsequent
material reconstruction. Since neural radiance fields typically model
such inconsistent colors as bumpy surfaces as shown in Fig. 1 left,
the artifacts from surface reconstruction will affect material recon-
struction if surfaces and materials are reconstructed sequentially.
Second, a glossy surface can affect the decomposition of the re-
flected radiance into a diffuse component and a specular component.
Typically, the specular component leaks into the diffuse component,
resulting in inaccurate modeling as shown in Fig. 1 right. Third,
focusing on synthetic data makes it easier to incorporate complex
physically-based rendering algorithms, but they may not be robust
enough to work on real data.

In this work, we consider the impact of glossy surfaces on surface
and material reconstruction. To better handle glossy surfaces, we
jointly use surface and volume rendering. Volume rendering does
not decompose the reflected radiance, while surface rendering con-
siders the diffuse and specular radiance separately. This approach
better regularizes not only the decomposition of reflected light but
also the surface reconstruction. To better recover diffuse and specu-
lar components, we estimate the ratio of incoming light reflected
in a specular manner. By introducing this parameter into a Spheri-
cal Gaussian representation of the BRDF, we can better model the
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reflection of glossy surfaces and decompose more accurate diffuse
albedo information. Furthermore, we propose predicting continu-
ous light visibility for signed distance functions to further enhance
the quality of reconstructed materials and illumination. Our ex-
perimental results have shown that our factorization of surface,
materials, and illumination achieves state-of-the-art performance
on both synthetic and real datasets. We improve surface, material,
and lighting reconstruction compared to PhySG [Zhang et al. 2021a],
NVDiffRec [Munkberg et al. 2022], and IndiSG [Zhang et al. 2022b],
the leading published competitors.
We believe that the good results of our approach compared to

much recently published and unpublished work in material recon-
struction is that we primarily developed our method on real data.
The fundamental challenge for working on material and lighting
reconstruction is the lack of available ground truth information for
real datasets. Our solution to this problem was to work with real
data and try to improve surface reconstruction as our main metric
by experimenting with different materials and lighting decomposi-
tions as a regularizer. While we could not measure the success of the
material and lighting reconstruction directly, we could indirectly
observe improvements in the surface metrics. By contrast, most
recent and concurrent work uses surface reconstruction and real
data more as an afterthought. This alternative route is to first focus
on developing increasingly complex material and lighting recon-
struction on synthetic data. However, we believe that this typically
does not translate as well to real data as our approach.

2 RELATED WORK
Neural radiance fields. NeRF [Mildenhall et al. 2020] is a seminal
work in 3D reconstruction. Important improvements were proposed
by Mip-NeRF [Barron et al. 2021] and Mip-NeRF360 [Barron et al.
2022]. One line of work explores the combination of different data
structures with MLPs, such as factored volumes [Chan et al. 2022;
Chen et al. 2022; Wang et al. 2023] or voxels [Müller et al. 2022;
Reiser et al. 2021; Yu et al. 2021]. Multiple approaches take a step
towards extending neural radiance fields to reconstruct material
information [Ge et al. 2023; Guo et al. 2022; Verbin et al. 2022; Yang
et al. 2022; Yariv et al. 2023].
Implicit neural surfaces. Implicit neural surfaces are typically
represented by occupancy functions or signed distance fields (SDFs).
Some early works [Chen and Zhang 2019; Mescheder et al. 2019;
Park et al. 2019] take point clouds as input and output implicit
neural surface representations. Many works have studied how to
obtain implicit neural surfaces from images, initially focusing on
surface rendering only [Niemeyer et al. 2020; Yariv et al. 2020]. Sub-
sequent methods followed NeRF to employ volume rendering, e.g.
UNISURF [Oechsle et al. 2021], VolSDF [Yariv et al. 2021], NeuS [Wang
et al. 2021], HF-NeuS [Wang et al. 2022], and Geo-NeuS [Fu et al.
2022].
Joint reconstruction of surface, material, and illumination.
Ideally, we would like to jointly reconstruct the 3D geometry, mate-
rial properties, and lighting conditions of a scene from 2D images.
Several methods employ strategies to simplify the problem such as
assuming known lighting conditions (NeRV [Srinivasan et al. 2021]
and NeRD [Boss et al. 2021a]) or pre-training (ENVIDR [Liang et al.

2023]). PhySG [Zhang et al. 2021a], NeRFactor [Zhang et al. 2021b],
and NeROIC [Kuang et al. 2022] use Spherical Gaussians, point
light sources, and spherical harmonics, respectively, to decompose
unknown lighting from a set of images. Using an illumination inte-
gration network, Neural-PIL [Boss et al. 2021b] further reduces the
computational cost of lighting integration. IRON [Zhang et al. 2022a]
uses SDF-based volume rendering methods to obtain better geomet-
ric details in the shape recovery stage. NVDiffrec [Munkberg et al.
2022] explicitly extracts triangle mesh from tetrahedral representa-
tion for better material and lighting modeling. IndiSG [Zhang et al.
2022b] uses Spherical Gaussians to represent indirect illumination
and achieves good lighting decomposition results. Some concurrent
works [Deng et al. 2022; Jin et al. 2023; Wu et al. 2023a; Zhang
et al. 2023b,a] continue to improve the efficiency and quality of in-
verse rendering but do not consider cases with a glossy appearance.
NeAI [Zhuang et al. 2023] proposes neural ambient illumination
to enhance the rendering quality of glossy appearance. NeRO [Liu
et al. 2023] highlights its good performance in reconstructing re-
flective objects. Despite a lot of recent activity in this area, existing
frameworks still struggle to effectively reconstruct reflective or
glossy surfaces, lighting, and material information directly from
images, especially real-world captured images. Appx Tab. 4 provides
a comprehensive overview of recent inverse rendering techniques.

3 METHOD
Our framework has three training stages to gradually decompose
the shape, materials, and illumination. The input to our framework
is a set of images. In the first stage, we reconstruct the surface from a
(possibly glossy) appearance by jointly using surface rendering and
surface rendering. After that, we use the reconstructed radiance field
to extract direct illumination visibility and indirect illumination in
the second stage. In the final stage, we recover the direct illumination
map and materials’ bidirectional reflectance distribution function
(BRDF). We propose to use a BRDF with a learnable specular albedo.

3.1 Stage 1: Surface reconstruction from glossy appearance
Current inverse rendering methods first recover implicit neural
surfaces, typically represented as SDFs, from multi-view images to
recover shape information, then freeze the parameters of neural
surfaces to further recover the material. However, this approach
does not consider specular reflections that produce highlights and
often models this inconsistent color as bumpy surface geometry as
depicted in Fig. 1 left. This incorrect surface reconstruction has a
negative impact on subsequent material reconstruction. We propose
a neural surface reconstruction method that considers the appear-
ance, diffuse color, and specular color of glossy surfaces at the same
time, whose architecture is given in Fig. 2. Our inspiration comes
from the following observations. First, according to Geo-NeuS, us-
ing SDF point cloud supervision can make the colors of surface
points and volume rendering more similar. We abandoned the idea
of using additional surface points to supervise SDFs and directly
used two different MLPs to predict the surface rendering and vol-
ume rendering results and narrow the gap between these two colors
using network training. In addition, when modeling glossy surfaces,
Ref-NeRF proposes a method of decomposing reflected radiance into
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Fig. 1. Left: Geometry visualization for NeuS, Geo-NeuS and our method on the Pot scene from SK3D dataset. Existing surface reconstruction methods
struggle to recover the correct geometry of glossy objects due to the complex view-dependent effects they induce. The weak color model of these methods
compels to represent such effects through concave geometric deformations rather than proper view-dependent radiance, leading to shape artifacts. In contrast,
our method can correctly reconstruct a highly reflective surface due to our joint appearance, diffuse, and specular color training strategy. Right: Visualization
of the recovered diffuse color component on the Bunny scene from DTU for IndiSG [Zhang et al. 2022b] and our method. Existing inverse rendering methods
overestimate the diffuse material component in the presence of specular highlights. Our regularization strategy allows us to properly disentangle the color
into diffuse and specular components.
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Fig. 2. Overview for Stage 1 (left) and Stage 3 (right) training pipelines (Stage 2 pipeline is omitted due to its simplicity — see Sec 3.2 for details). The first
stage (left) trains the SDF network S𝜃 which outputs a feature vector 𝒗𝑓 ∈ R256, SDF value 𝑠 ∈ R, and normal 𝒏 ∈ S2 (as a normalized gradient of 𝑠 ; denoted
via the dashed line); diffuse and specular surface color networks M𝑑 and M𝑠 produce their respective colors 𝒄𝑑 , 𝒄𝑠 ∈ R3 via surface rendering, which are
then combined through tone mapping 𝛾 ( ·) to get the final surface color𝐶sur ∈ R3; volumetric color network M𝑐 produces the volumetrically rendered color
𝐶vol ∈ R3. The ref operation denotes computation of the reflection direction 𝝎𝑟 ∈ S2 from normal 𝒏 and ray direction 𝝎 ∈ S2. In the third stage (right),
we optimize the material BRDF auto-encoder with the sparsity constraint [Zhang et al. 2022b], our novel specular albedo network M𝑠𝑎 , and the indirect
illumination network Mind. See Sec 3 for details.

diffuse and specular components, which can better model the glossy
appearance. However, this approach is unstable when directly ap-
plied to reconstruct implicit surfaces. We propose to simultaneously
optimize the radiance from the volumetric rendering and the sur-
face rendering. For surface rendering, we further split the reflected
radiance into a diffuse and a specular component. This can achieve
an improved surface reconstruction of glossy surfaces.
Shape representation. We model shape as a signed distance func-
tion S𝜃 : 𝒙 ↦→ (𝑠, 𝒗𝑓 ), which maps a 3D point 𝒙 ∈ R3 to its signed
distance value 𝑠 ∈ R and a feature vector 𝒗𝑓 ∈ R256. SDF al-
lows computing a normal 𝒏 directly by calculating the gradient:
𝒏 = ∇S𝜃 (𝒙)/∥∇S𝜃 (𝒙)∥.
Synthesize appearance. Learning implicit neural surfaces from
multi-view images often requires synthesizing appearance/color to
optimize the underlying surface. The recent use of volume rendering
in NeuS [Wang et al. 2021] has been shown to better reconstruct
surfaces. According to Eq. 14 in Appx A, the discretization formula
for volume rendering is𝐶vol =

∑𝑛
𝑖=1𝑇𝑖𝛼𝑖 𝒄 𝒊 =

∑𝑛
𝑖=1𝑤𝑖 𝒄 𝒊 with 𝑛 sam-

pled points {𝒓 (𝑡𝑖 )}𝑛𝑖=1 on the ray. where 𝛼𝑖 = max(Φ𝑠 (S𝜃 (𝒓 (𝑡𝑖 ))) −
Φ𝑠 (S𝜃 (𝒓 (𝑡𝑖+1)))/Φ𝑠 (S𝜃 (𝒓 (𝑡𝑖 ))), 0), which is discrete opacity values
following NeuS, where Φ𝑠 = 1/(1 + 𝑒−𝑥 ) is a sigmoid function

and 𝑇𝑖 =
∏𝑖−1
𝑗=1 (1 − 𝛼 𝑗 ) is the discrete transparency. Similar to the

continuous case, we can also define discrete weights𝑤𝑖 = 𝑇𝑖𝛼𝑖 .
To compute color 𝒄 𝒊 on the point 𝒓 (𝑡𝑖 ), we define a color mapping

M𝑐 : (𝒙, 𝒏, 𝒅, 𝒗𝑓 ) ↦→ 𝒄 from any 3D point 𝒙 given its feature vector
𝒗𝑓 , normal 𝒏 and ray direction 𝒅.
Synthesize diffuse and specular components. In addition to
synthesizing appearance, we also synthesize diffuse and specular
components. This idea comes from surface rendering, which better
handles surface reflections. From Eq. 16 in Appx A, the radiance
𝐿𝑜 of surface point 𝒙 and outgoing viewing direction 𝝎𝑜 can be
decomposed into two parts: diffuse and specular radiance.

𝐿𝑜 (𝒙,𝝎𝑜 ) =
𝒅𝑎
𝜋

∫
Ω
𝐿𝑖 (𝒙,𝝎𝑖 ) (𝝎𝑖 · 𝒏)𝑑𝝎𝑖 (1)

+
∫
Ω
𝑓𝑠 (𝒙,𝝎𝑖 ,𝝎𝑜 )𝐿𝑖 (𝒙,𝝎𝑖 ) (𝝎𝑖 · 𝒏)𝑑𝝎𝑖 (2)

= M𝑑 (𝒙, 𝒏) +M𝑠 (𝒙,𝝎𝑜 , 𝒏) (3)

We define two neural networks to predict diffuse and specular com-
ponents separately. We use the term diffuse radiance to refer to
the component of the reflected radiance that stems from a diffuse
surface reflection. We define a mapping M𝑑 : (𝒙, 𝒏, 𝒗𝑓 ) ↦→ 𝒄𝑑 for
diffuse radiance that maps surface points 𝒙 , surface normals 𝒏, and
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feature vectors 𝒗𝑓 to diffuse radiance. For simplicity, we assume that
the diffuse radiance is not related to the outgoing viewing direction
𝝎𝑜 .
We use the term specular radiance to describe the non-diffuse

(view-direction dependent) component of the reflected radiance. Ref-
NeRF [Verbin et al. 2022] proposes to model the glossy appearance
using the reflection direction instead of the viewing one. However,
from Eq. 3, we can observe that specular radiance is also highly
dependent on the surface normal, which is particularly important
when reconstructing SDF. In contrast to Ref-NeRF, we further condi-
tion specular radiance on the surface normal. Therefore, we define
specular radiance M𝑠 : (𝒙,𝝎𝑟 , 𝒏, 𝒗𝑓 ) ↦→ 𝒄𝑠 , which maps surface
points 𝒙 , reflection direction 𝝎𝑟 , surface normals 𝒏, and feature
vectors 𝒗𝑓 to specular radiance, where 𝝎𝑟 = 2(𝝎𝑜 · 𝒏)𝒏 − 𝝎𝑜 .

Surface rendering focuses the rendering process on the surface,
allowing for a better understanding of highlights on the surface
compared to volume rendering, but requires calculating surface
points. We sample 𝑛 points on the ray {𝒓 (𝑡𝑖 ) |𝑖 = 1, ..., 𝑛}. We query
the sampled points to find the first point 𝒓 (𝑡 ′

𝑖
) whose SDF value is

less than zero S𝜃 (𝒓 (𝑡 ′𝑖 )) < 0. Then the point 𝒓 (𝑡𝑖′−1) sampled before
𝒓 (𝑡 ′

𝑖
) has the SDF value greater than or equal to zero S𝜃 (𝒓 (𝑡𝑖′−1)) ≥

0. To account for the possibility of rays interacting with objects and
having multiple intersection points, we select the first point with a
negative SDF value to solve this issue.
We use two neural networks to predict the diffuse radiance and

specular radiance of two sampling points 𝒓 (𝑡𝑖′−1) and 𝒓 (𝑡 ′
𝑖
). The

diffuse radiance of the two points calculated by the diffuse network
M𝑑 will be 𝒄𝑖

′−1
𝑑

and 𝒄𝑖
′

𝑑
. The specular radiance of the two points

calculated by the specular network M𝑠 will be 𝒄𝑖
′−1
𝑠 and 𝒄𝑖

′
𝑠 . There-

fore, the diffuse radiance and specular radiance of the surface point
𝒙 can be calculated as follows.

𝒄𝑑 = M𝑑 (𝒙, 𝒏) =
𝑤𝑖′−1𝒄𝑖

′−1
𝑑

+𝑤 ′
𝑖
𝒄𝑖

′

𝑑

𝑤𝑖′−1 +𝑤 ′
𝑖

(4)

𝒄𝑠 = M𝑠 (𝒙,𝝎𝑜 , 𝒏) =
𝑤𝑖′−1𝒄𝑖

′−1
𝑠 +𝑤 ′

𝑖
𝒄𝑖

′
𝑠

𝑤𝑖′−1 +𝑤 ′
𝑖

(5)

The final radiance of the intersection of the ray and the surface is
calculated by a tone mapping:

𝐶sur = 𝛾 (𝒄𝑑 + 𝒄𝑠 ) (6)

where 𝛾 is a pre-defined tone mapping function that converts linear
color to sRGB [Verbin et al. 2022] while ensuring that the resulting
color values are within the valid range of [0, 1].
Training strategies. In our training process, we define three loss
functions, namely volume radiance loss Lvol, surface radiance loss
Lsur, and regularization loss Lreg. The volume radiance loss Lvol
is measured by calculating the L1 distance between the ground
truth colors 𝐶gt and the volume radiances 𝐶vol of a subset of rays
R. The surface radiance loss Lsur is measured by calculating the
L1 distance between the ground truth colors 𝐶gt and the surface
radiances 𝐶sur. Lreg is an Eikonal loss term on the sampled points.
We use weights 𝜆sur and 𝜆reg to balance the impact of these three
losses. The overall training loss is as follows. See Appx C for details
of training strategies.

L = Lvol + 𝜆surLsur + 𝜆regLreg (7)

3.2 Stage 2: Learning direct lighting visibility and indirect
illumination

At this stage, we focus on predicting the lighting visibility and
indirect illumination of a surface point 𝒙 under different incoming
light direction 𝝎𝑖 using the SDF in the first stage.

Visibility is an important factor in shadow computation. It calcu-
lates the visibility of the current surface point 𝒙 in the direction of
the incoming light 𝝎𝑖 . Path tracing of the SDF is commonly used
to obtain a binary visibility (0 or 1) as used in IndiSG [Zhang et al.
2022b], but this kind of visibility is not friendly to network learning.
Inspired by NeRFactor [Zhang et al. 2021b], we propose to use an
integral representation with the continuous weight function𝑤 (𝑡)
(from 0 to 1) for the SDF to express light visibility. Specifically, we
establish a neural network M𝜈 : (𝒙,𝝎𝑖 ) ↦→ 𝜈 , that maps the surface
point 𝒙 and incoming light direction 𝝎𝑖 to visibility, and the ground
truth value of light visibility is obtained by integrating the weights
𝑤𝑖 of the SDF of sampling points along the incoming light direction
and can be expressed as 𝜈𝑔𝑡 = 1 −∑𝑛

𝑖=1𝑤𝑖 .
Indirect illumination refers to the light that is reflected or emitted

from surfaces in a scene and then illuminates other surfaces, rather
than directly coming from a light source, which contributes to the
realism of rendered images. Following IndiSG [Zhang et al. 2022b],
we parameterize indirect illumination 𝐼 (𝒙,𝝎𝑖 ) via 𝐾𝑖 = 24 Spherical
Gaussians (SGs). For more details, see Appx D.

3.3 Stage 3: Recovering materials and direct illumination
Reconstructing good materials and lighting from scenes with high-
lights is a challenging task. Following prior works [Zhang et al.
2021a, 2022b], we use the Disney BRDF model [Burley and Studios
2012] and represent BRDF 𝑓𝑠 (𝝎𝑖 | 𝝃𝑠 , 𝜆𝑠 , 𝝁𝑠 ) via Spherical Gaus-
sians [Zhang et al. 2021a]. Direct (environment) illumination is
represented using 𝐾𝑒 = 128 SGs:

𝐸 (𝒙,𝝎𝑖 ) =
𝐾𝑒∑︁
𝑘=1

𝐸𝑘 (𝝎𝑖 | 𝝃 𝑒𝑘 , 𝜆
𝑒
𝑘
, 𝝁𝑒
𝑘
) (8)

and render diffuse radiance and specular radiance of direct illumi-
nation in a way similar to Eq. 2.

𝐿𝑑 (𝒙) =
𝒅𝑎
𝜋

𝐾𝑒∑︁
𝑘=1

(𝜈 (𝒙,𝝎𝑖 ) ⊗ 𝐸𝑘 (𝝎𝑖 )) · (𝝎𝑖 · 𝒏) (9)

𝐿𝑠 (𝒙,𝝎𝑜 ) =
𝐾𝑒∑︁
𝑘=1

(𝑓 𝑎𝑠 ⊗ 𝜈 (𝒙,𝝎𝑖 ) ⊗ 𝐸𝑘 (𝝎𝑖 )) · (𝝎𝑖 · 𝒏) (10)

where 𝒅𝑎 is diffuse albedo.
To reconstruct a more accurate specular reflection effect, we use

an additional neural networkM𝑠𝑎 : (𝒙,𝝎𝑟 ) ↦→ 𝒔𝑎 ∈ [0, 1] to predict
the specular albedo. Themodified BRDF 𝑓 𝑎𝑠 is as follows:

𝑓 𝑎𝑠 = 𝒔𝑎 ⊗ 𝑓𝑠 (𝝎𝑖 ; 𝝃 , 𝜆, 𝝁) = 𝑓𝑠 (𝝎𝑖 ; 𝝃 , 𝜆, 𝒔𝑎𝝁) (11)

For indirect illumination, the radiance is extracted directly from
another surface and does not consider light visibility. The diffuse
radiance and specular radiance of indirect illumination are as follows

𝐿ind
𝑑

(𝒙) = 𝒅𝑎
𝜋

𝑇∑︁
𝑘=1

𝐼𝑘 (𝒙,𝝎𝑖 ) · (𝝎𝑖 · 𝒏) (12)
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𝐿ind𝑠 (𝒙,𝝎𝑜 ) =
𝑇∑︁
𝑘=1

(𝒔𝑎 ⊗ 𝑓𝑠 ) ⊗ 𝐼𝑘 (𝒙,𝝎𝑖 ) · (𝝎𝑖 · 𝒏) (13)

Our final synthesized appearance is 𝐶 = 𝐿𝑑 + 𝐿𝑠 + 𝐿ind𝑑 + 𝐿ind𝑠 and
supervised via an L1 RGB loss.

4 EXPERIMENTS

4.1 Evaluation setup
Datasets. To evaluate the quality of surface reconstruction, we
use the DTU [Jensen et al. 2014], SK3D [Voynov et al. 2022], and
Shiny [Verbin et al. 2022] datasets. DTU and SK3D are two real-
world captured datasets, while Shiny is synthetic. In DTU, each
scene is captured by 49 or 64 views at 1600×1200 resolution. For it,
we select 4 scenes with high specularities to evaluate our method
in terms of surface quality quantitatively and material decompo-
sition qualitatively. In the SK3D dataset, the image resolution is
2368×1952, and 100 views are provided for each scene. Compared
to DTU, SK3D contains more reflective objects with complex view-
dependent lighting effects. From SK3D, we select 4 glossy surface
scenes with high levels of glare. The Shiny dataset has 5 different
glossy objects rendered in Blender under conditions similar to the
NeRF-synthetic dataset [Mildenhall et al. 2020] (100 training and
200 testing images per scene of the 800×800 resolution).

To evaluate the effectiveness of material and lighting reconstruc-
tion, we use the dataset provided by IndiSG [Zhang et al. 2022b],
which has self-occlusion and complex materials. Each scene has 100
training images of 800 × 800 resolution. To evaluate the quality of
material decomposition, the dataset also provides diffuse albedo,
roughness, and masks for testing.
Baselines. Our main competitors are the methods that can also
reconstruct all three scene properties: surface geometry, materials,
and illumination. We choose NVDiffRec [Munkberg et al. 2022],
PhySG [Zhang et al. 2021a], and IndiSG [Zhang et al. 2022b] due
to their popularity and availability of the source code. NVDiffRec
uses tetrahedral marching to extract triangle meshes and obtains
goodmaterial decomposition using a triangle-based renderer. PhySG
optimizes geometry and material information at the same time using
a Spherical Gaussian representation for direct lighting and material.
IndiSG first optimizes geometry and then uses a Spherical Gaussian
representation for indirect lighting to improve the quality ofmaterial
reconstruction.
Apart from that, we also compared against more general sur-

face reconstruction methods to provide additional context for our
results. For this, we use NeuS [Wang et al. 2021], Geo-NeuS [Fu
et al. 2022], and NeRO [Liu et al. 2023]. NeuS is a popular implicit
surface reconstruction method that achieves strong results with-
out relying on extra data. Geo-NeuS improves upon NeuS by using
additional point cloud supervision, obtained from structure from
motion (SfM) [Schönberger and Frahm 2016]. NeRO is capable of re-
constructing reflective objects effectively. In addition, we also show
a qualitative comparison to Ref-NeRF [Verbin et al. 2022], which
considers material decomposition, but due to modeling geometry
using density function, it has difficulty extracting smooth geometry.
Evaluation metrics. We use the official evaluation protocol to
compute Chamfer distance (lower values are better) for the DTU

dataset and also use Chamfer distance for the SK3D dataset. We
utilize the PSNR metric (higher values are better), to quantitatively
evaluate the quality of rendering, material, and illumination. We
follow IndiSG [Zhang et al. 2022b] and employmasks to compute the
PSNR metric in the foreground to evaluate the quality of materials
and rendering. See Appx B for implementation details.

4.2 Surface reconstruction quality
We first demonstrate quantitative results in terms of Chamfer dis-
tance. We provide the numerical results for IndiSG and PhySG for
comparison. NVDiffrec is not as good for surface reconstruction
as we verify qualitatively in Fig. 6. For completeness, we also com-
pare our method against NeuS, Geo-NeuS, and NeRO. First, we list
quantitative results on DTU and SK3D in Tab. 1. As shown in the
table, Geo-NeuS achieves better performance on the DTU dataset
because the additional sparse 3D points generated by structure from
motion (SfM) for supervising the SDF network are accurate. Our
approach can also incorporate the components of Geo-NeuS based
on extra data, and the surface reconstruction quality will be fur-
ther improved as shown in Appx F. However, on the SK3D scenes
with glossy surfaces, these sparse 3D points cannot be generated
accurately by SfM, leading to poor surface reconstruction by Geo-
NeuS. In contrast, our approach can reconstruct glossy surfaces on
both DTU and SK3D without any explicit geometry information. In-
diSG and PhySG share the same surface reconstruction method, but
PhySG optimizes it together with the materials, while IndiSG freezes
the underlying SDF after its initial optimization. Compared with
IndiSG, PhySG cannot optimize geometry and material information
well simultaneously on real-world acquired datasets with complex
lighting and materials. Our method is the overall best method on
SK3D. Most importantly, we demonstrate large improvements over
IndiSG and PhySG, our main competitors, on both DTU and SK3D.
We further demonstrate the qualitative experimental comparison
results in Fig. 5. It can be seen that although Geo-NeuS has the best
quantitative evaluation metrics, it loses some of the fine details, such
as the small dents on the metal can in DTU 97. By visualizing the
results of the SK3D dataset, we can validate that our method can
reconstruct glossy surfaces without explicit geometric supervision.

We further conducted additional comparisons of NeRO and NeuS
on real-world datasets SK3D and DTU with non-Lambertian sur-
faces. As shown in Fig. 8 for SK3D dataset, even in scenarios with a
simple background and straightforward geometry, NeRO still tends
to lose certain details of the dataset and fills in shadowed areas
(flower pot model). Chamfer distance metrics results are presented
in Tab. 1. For DTU datasets, as shown in Tab. 1 and Appx Fig. 14.
NeRO not only struggles to accurately restore detailed information
but also fails to address the negative impact of partial highlights
on geometry. Moreover, the presence of shadows causes NeRO to
mistakenly reconstruct shadowed areas as real objects and fill them
in (bricks and skull models). Additional Chamfer distance metrics
for the other DTU scenes are presented in Appx Tab. 6.
We show the qualitative results for surface reconstruction com-

pared with NeuS, Ref-NeRF, IndiSG, PhySG, and NVDiffrec on the
Shiny dataset, which is a synthetic dataset with glossy surfaces.
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Table 1. Quantitative results in terms of Chamfer distance on the scenes with high specularities on DTU [Jensen et al. 2014] and SK3D [Voynov et al. 2022].
Our method achieves state-of-the-art surface reconstruction results on both glossy (this table) and regular (see Appx. Table 6) scenes.

DTU 63 DTU 97 DTU 110 DTU 122 Mean Pot Funnel Snowman Jug Mean

NeuS [Wang et al. 2021] 1.01 1.21 1.14 0.54 0.98 2.09 3.93 1.40 1.81 2.31
NeRO [Liu et al. 2023] 1.32 1.47 1.14 0.57 1.12 6.03 2.63 1.71 4.23 3.65
Geo-NeuS [Fu et al. 2022] 0.96 0.91 0.70 0.37 0.73 1.88 2.03 1.64 1.68 1.81

PhySG [Zhang et al. 2021a] 4.16 4.99 3.57 1.42 3.53 14.40 7.39 1.55 7.59 7.73
IndiSG [Zhang et al. 2022b] 1.15 2.07 2.60 0.61 1.61 5.62 4.05 1.74 2.35 3.44
Factored-NeuS (ours) 0.99 1.15 0.89 0.46 0.87 1.54 1.95 1.31 1.40 1.55

From Fig. 6, we can observe that NeuS is easily affected by high-
lights, and the geometry reconstructed by Ref-NeRF has strong noise.
PhySG is slightly better than IndiSG on the Shiny synthetic dataset
with jointly optimizing materials and surfaces, such as toaster and
car scenes, but still can not handle bright reflections. NVDiffrec
works well on the teapot model but fails on other more challeng-
ing glossy surfaces. Our method can produce clean glossy surfaces
without being affected by the issues caused by highlights. Over-
all, our approach demonstrates superior performance in surface
reconstruction, especially on glossy surfaces.

4.3 Material reconstruction and rendering quality
In Tab. 2, we evaluate the quantitative results in terms of PSNR
metric for material and illumination reconstruction on the IndiSG
dataset compared with PhySG, NVDiffrec, and IndiSG. For com-
pleteness, we also compare to the case where the specular albedo
improvement was not used in Stage 3 (See in Eq. 11 in Section 3.3).
Regarding diffuse albedo, although NVDiffrec showed a slight im-
provement over us in the balloons scene, we achieved a significant
improvement over NVDiffrec in the other three scenes. Our method
achieved the best results in material reconstruction. Moreover, our
method achieves the best results in illumination quality without
using the specular albedo improvement. Additionally, our method
significantly outperforms other methods in terms of rendering qual-
ity and achieves better appearance synthesis results. We present the
qualitative results of material reconstruction in Fig. 3, which shows
that our method has better detail capture compared to IndiSG and
PhySG, such as the text on the balloon. Although NVDiffrec can
reconstruct the nails on the backrest, its material decomposition
effect is not realistic. The materials reconstructed by our method
are closer to ground truth ones. Fig. 12 in Appx. also demonstrates
the material decomposition effectiveness of our method on Shiny
datasets with glossy surfaces. We show the diffuse albedo and ren-
dering results of NVDiffrec, IndiSG, and our method. The rendering
results indicate that our method can restore the original appearance
with specular highlights more accurately, such as the reflections
on the helmet and toaster compared to the IndiSG and NVDiffrec
methods. The material reconstruction results show that our diffuse
albedo contains less specular reflection information compared to
other methods, indicating our method has a better ability to suppress
decomposition ambiguity caused by specular highlights.
In addition to the synthetic datasets with ground truth decom-

posed materials, we also provide qualitative results on real-world

captured datasets such as DTU and SK3D in Fig. 7. From the DTU
data, we can observe that our method can separate the specular
reflection component from the diffuse reflection component, as seen
in the highlights on the apple, can, and golden rabbit. Even when
faced with a higher intensity of specular reflection, as demonstrated
in the example showcased in SK3D, our method excels at preserving
the original color in the diffuse part and accurately separating high-
lights into the specular part. To offer a more detailed presentation of
the reconstruction quality across continuous viewpoints, we include
videos of diffuse albedo, indirect illumination, light visibility, and
rendering for three different scenes in the supplementary materi-
als. Furthermore, we perform relighting for these three scenes and
provide videos to assess the relighting quality.

4.4 Ablation study
Materials and illumination.We conduct an ablation study on the
different components we proposed by evaluating their material and
lighting performance on a complex scene, the hotdog, as shown in
Tab. 3. “SI” refers to surface improvement, which means using net-
works to jointly synthesize volume color and decomposed surface
color. “VI” stands for visibility improvement, which involves contin-
uous light visibility supervision based on the SDF. “SAI” refers to
specular albedo improvement, which incorporates specular albedo
into the BRDF of Spherical Gaussians. We compare different settings
in terms of diffuse albedo, roughness, appearance synthesis, and il-
lumination. We used IndiSG as a reference and find that introducing
volume rendering can improve the accuracy of material and lighting
reconstruction. When the surface has no defects, further perform-
ing the surface improvement will enhance the quality of roughness
and rendering but may cause a decrease in lighting reconstruction
quality. Making the visibility supervision continuous improves the
reconstruction of diffuse albedo, roughness, and lighting, but it also
affects rendering quality. Introducing specular albedo can greatly
improve roughness and rendering quality but negatively affect light-
ing reconstruction quality. We further show qualitative results in
Fig. 9. It can be observed that after improving the light visibility, the
white artifacts at the edges of the plate in diffuse albedo are signifi-
cantly reduced. Introducing specular albedo also makes the sausage
appear smoother and closer to its true color roughness, represented
by black. In terms of lighting, when not using specular albedo, the
lighting reconstruction achieves the best result, indicating a clearer
reconstruction of ambient illumination. In summary, our ablation
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Table 2. Quantitative results in terms of PSNR on IndiSG [Zhang et al. 2022b] dataset for IndiSG and our method. “SAI” refers to specular albedo improvement.

Baloons Hotdog Chair Jugs Mean
albedo illumination rendering albedo illumination rendering albedo illumination rendering albedo illumination rendering albedo illumination rendering

PhySG 15.91 13.89 27.83 13.95 11.69 25.13 14.86 12.26 28.32 16.84 10.92 28.20 15.39 12.19 27.37
NVDiffrec 26.88 14.63 29.90 13.60 22.43 33.68 21.12 15.56 29.16 11.20 10.47 25.30 20.41 13.56 29.51
IndiSG 21.95 25.24 24.40 26.43 21.87 31.77 24.71 22.17 24.98 21.44 20.59 24.91 23.63 22.47 26.51
Ours w/o IndiLgt 23.13 18.24 29.45 25.62 17.97 35.97 25.22 18.04 34.31 22.87 21.84 26.30 24.21 19.02 31.51
Ours w/o SAI 24.09 25.97 28.82 30.58 23.50 36.05 25.23 22.13 32.64 19.64 20.40 33.56 24.89 23.00 32.77
Ours 25.79 21.79 33.89 30.72 20.23 36.71 26.33 20.97 34.58 22.94 21.84 36.48 26.28 21.21 35.41

GT albedo PhySG NVDiffrec IndiSG Ours GT image PhySG NVDiffrec IndiSG Ours

Ju
gs

Ch
ai
r

H
ot
do

g
Ba

lo
on

s

Fig. 3. Qualitative results on IndiSG dataset in terms of albedo reconstruction (left half) and novel view synthesis quality (right half).

Table 3. Ablation study for materials and illumination decomposition in
terms of PSNR. “Alb” stands for “diffuse albedo”, “Rough” is “roughness”,
“Rend” is “appearance”, and “Illu” is “illumination”.

Method Alb Rough Rend Illu

IndiSG [Zhang et al. 2022b] 26.44 15.97 31.78 21.88

Ours w/o SAI w/o VI w/o SI 29.31 16.98 35.48 23.48
Ours w/o SAI w/o VI 29.64 17.86 36.36 23.41
Ours w/o SAI 30.58 18.83 36.05 23.50
Ours 30.76 23.10 36.71 20.24

study highlights the importance of taking into account various fac-
tors when reconstructing materials and illumination from images.
By evaluating the performance of different modules, we can better
understand their role in improving the reconstruction quality.

In stage 3, if we do not consider indirect illumination during the
training process, the predicted results for rendering, material, and
lighting will all experience a decline. The results are shown in Fig. 10.
The specific PSNR metrics can be found in Tab. 2
Surface reconstruction. To validate our surface reconstruction
strategy in Stage 1, we selected the Pot scene from SK3D and ab-
lated the method the following way. “Lvol + L𝐼sur” means that we
only use volume rendering and surface rendering MLPs for sur-
face reconstruction, without decomposing material information
into diffuse and specular components. “Lvol + L𝐼 𝐼vol” means we use
two volume reconstructions where one of them is split into diffuse
and specular components. Just using “L𝐼 𝐼vol” like Ref-NeRF to split

Image NeuS
2.09

Lvol + L𝐼
sur

2.01
Lvol + L𝐼 𝐼

vol
1.91

Ours
1.88

Fig. 4. Ablation study for different surface reconstruction methods. The
numbers in the second line represent Chamfer distance.

diffuse and specular components fails to reconstruct the correct
surface due to inaccurate normal vectors in the reflection direction
computation. We provide the quantitative (Chamfer distance) and
qualitative results of different frameworks in Fig. 4. It can be seen
that synchronizing the volume color and the color on the surface
point has a certain effect in suppressing concavities, but still can-
not meet the requirements for complex glossy surfaces with strong
reflections. Using volume rendering to decompose diffuse and spec-
ular components can result in excessive influence from non-surface
points, which still causes small concavities. When using our loss
“Lvol (L𝐼vol) + Lsur (L𝐼 𝐼sur)” , we can achieve reconstruction results
without concavities.

5 CONCLUSIONS
In this work, we propose Factored-NeuS, a novel approach to inverse
rendering that reconstructs geometry, material, and lighting from
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multiple views. Our first contribution is to simultaneously synthe-
size the appearance, diffuse radiance, and specular radiance during
surface reconstruction, which allows the geometry to be unaffected
by glossy highlights. Our second contribution is to train networks
to estimate reflectance albedo and learn a visibility function super-
vised by continuous values based on the SDF, so that our method
is capable of better decomposing material and lighting. Experimen-
tal results show that our method surpasses the state-of-the-art in
both geometry reconstruction quality and material reconstruction
quality. A future research direction is how to effectively decompose
materials for fine structures, such as nails on the backrest of a chair.
In certain scenarios, our method still faces difficulties. For mesh

reconstruction, we can only enhance results on scenes with smooth
surfaces and few geometric features. Despite improvements on the
glossy parts in the DTU 97 results, the overall Chamfer distance
does not significantly decrease. As seen in Fig. 3, the reconstructed
albedo of the chair still lacks some detail. The nails on the chair
and the textures on the pillow are not accurately captured in the
reconstructed geometry. Moreover, we do not foresee any nega-
tive societal implications directly linked to our research on surface
reconstruction.
In future work, we would like to focus on the reconstruction

of dynamic objects and humans. We also would like to include
additional data acquisition modalities for improved performance.
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Fig. 5. Qualitative results for DTU (left) and SK3D (right).
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Fig. 6. Qualitative results for the Shiny dataset [Verbin et al. 2022].
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Fig. 7. Qualitative results for the DTU (left) and SK3D (right) datasets.
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Fig. 9. Ablation study of material and illumination reconstruction.
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